The Arm2u biomedical engineering team, from the UPC’s Barcelona School of Industrial Engineering (ETSEIB), has designed and manufactured using 3D printing technology a customizable transradial prosthesis that responds to the user’s nerve impulses.
Fifteen bachelor’s and master’s degree students from the Barcelona School of Industrial Engineering (ETSEIB) of the Universitat Politècnica de Catalunya · BarcelonaTech (UPC) share the same dream: improving the quality of life of people with disabilities using assistive technologies. Specifically, the young biomedical engineering team Arm2u is developing a transradial prosthesis—which replaces an arm missing below the elbow—with myoelectric control, i.e. controlled by the natural electrical signals produced by muscle contraction.
After creating a first prosthesis last year, the team has taken a step forward by creating a second prototype, a fully functional robotic arm that enables hand pronosupination (forearm rotation) and opening/closing movements. It is based on EMG sensors, which collect the commands from the patient’s muscle contraction and transforms these electrical impulses into a signal that the microcontroller can understand and use.
The prosthesis is 3D printed with PLA plastic, so it can be produced at a low cost, as explained by Lluís Bonet Ortuño, one of the team leaders: “One of our main goals when developing the prosthesis was to make a prototype with affordable technologies so that it could be produced and modified constantly without a high cost. Using 3D printing, we have created a prosthesis at a much lower cost than similar prostheses on the market.”